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Abstract. Caticha (1998 Phys. Rev. A 57 1572) applies consistency arguments to derive the
quantum mechanical rules for compounding probability amplitudes in much the same way as in
earlier work by Tikochinsky (1988 J. Math. Phys. 29 398, 1988 Int. J. Theor. Phys. 27 543). These
works are examined together to find the assumptions needed to obtain the most general results.

In a recent article Caticha [1] uses consistency arguments to derive the quantum mechanical
rules for combining probability amplitudes. Caticha’s work bears close resemblance, in both
approach and execution, to earlier work by one of the present authors [2,3]. With hindsight, it
seems a good time to take stock and see what can be achieved by this approach and what are
the assumptions needed to obtain the most general results.

As a preamble, we make the following observations. There exist well defined experimental
procedures to prepare a system in certain initial quantum states, as well as ways to test whether
a system so prepared arrives at a given final state. One way to prepare a system in a given
quantum state is to pass it through a filter (e.g. a photon through a polarizing filter; a particle
with spin through a Stern–Gerlach apparatus). Furthermore, there exist pairs of mutually
orthogonal filters, such that a system passing through one filter will certainly be blocked by
the second filter. For other (non-orthogonal) pairs of filters, it is a matter of chance whether a
system prepared by passing through one filter will also pass the second. Moreover, the state of
of a system prepared by passing consecutively several filters is determined solely by the last
filter. This independence of the past history is referred to as the Markovian property of the
quantum state. Thus, following Feynman [4], we treat the quantum state not as a vector in an
abstract Hilbert state, but as an experimentally prepared entity.

With the above background in mind, our aim is to derive in a consistent way a substantial
part of the formalism of quantum mechanics, namely, the rules for compounding probability
amplitudes and for calculating the corresponding probabilities, starting with very simple
assumptions. Note that the rules for assigning the elementary amplitudes are not part of
this programme. Nevertheless, the part of the formalism that we shall prove has far-reaching
consequences, as has been amply demonstrated, particularly by Feynman [4].

Our point of departure is the recognition that in quantum mechanics one cannot directly
assign probabilities to processes. In contrast to the classical situation, not every proposition
can be answered by yes or no (which slit did the particle go through?). Therefore Boolean
algebra does not apply and the road opened by Cox [5] to introduce probabilities is not open
to us. Probability must, therefore, be introduced indirectly as a function of the corresponding
probability amplitude [3]. Let us review briefly how this is done.
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The basic entities of concern are the transition amplitudes 〈B|A〉 between experimentally
determined initial and final states A and B. Both time-dependent transitions 〈B(t2)|(A(t1)〉
and transitions at a given time t2 = t1 are of interest. In fact, time serves as one of the
parameters identifying the quantum state. To each transition one assigns a complex number—
the probability amplitude for the process. This number is assumed to depend only on the given
process A → B and to be independent of the past history (Markovian property).

Among the possible processes there are two kinds of special interest: processes in series,
an example of which is C → B → A with amplitude 〈A|C〉viaB , where C is made to pass
through a filter B before A is verified, and processes in parallel, the simplest of which is

B
↗
↘
C1

C2

↘
↗A

where B can proceed to A only through two orthogonal filters C1, C2. The amplitude for this
process will be denoted by 〈A|B〉viaC1,C2 . Very special cases of these ‘in series’ or ‘in parallel’
processes are referred to as AND, OR setups in [1]. Our only assumption regarding these
processes is that the amplitudes for the processes are given analytic functions of the partial
complex amplitudes x and y, namely,

〈A|C〉viaB = f (x, y) (1)

where

x = 〈A|B〉 and y = 〈B|C〉 (2)

and

〈A|B〉viaC1C2 = g(x, y) (3)

where

x = 〈A|B〉viaC1 and y = 〈A|B〉viaC2 . (4)

Our task is to find the possible form of these functions, subject to consistency demands.
Consider now the process D → C → B → A with amplitudes

z = 〈C|D〉 y = 〈B|C〉 and x = 〈A|B〉. (5)

We could calculate the amplitude for the process in two different ways: (a) combine first
C → B → A to obtain 〈A|C〉viaB = f (x, y) and then calculate f (f (x, y), z) or (b) combine
first D → C → B to obtain 〈B|D〉viaC = f (y, z) and then calculate f (x, f (y, z)).
Consistency then demands that the two calculations give the same result, namely, the function
f (x, y) should obey the associative law

f (x, f (y, z)) = f (f (x, y), z). (6)

Similarly, for processes in parallel, consistency entails

g(x, g(y, z)) = g(g(x, y), z). (7)

Finally, consider the combined process

C → B
↗
↘
C1

C2

↘
↗A.

One way to calculate the amplitude is to consider it as a process in series, with amplitude
f (g(x, y), z), where

x = 〈A|B〉viaC1 y = 〈A|B〉viaC2 and z = 〈B|C〉. (8)
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Another way to look at the same process is to consider it as a process in parallel, with an
amplitude g(f (x, z), f (y, z)). Demanding that the two representations agree, we have the
distributive law

f (g(x, y), z) = g(f (x, z), f (y, z)). (9)

This is all that is needed to determine the functions g(x, y) and f (x, y). From here on
the rest is mathematics. In particular, there is no need to assume commutativity for processes
in parallel, as was done in [2]. The equality g(x, y) = g(y, x) follows automatically from
Cox’s solution [6] of the associative law (7), as recounted, for example, in [1]. As shown in [2]
and [1], given the functions g(x, y) and f (x, y) it is always possible to find a transformation
x ′ = H(x) which will bring g and f to the canonical form

[g(x, y)]′ = x ′ + y ′ [f (x, y)]′ = x ′y ′. (10)

Conversely, starting with equation (10), one can make a transformation x ′′ = K(x ′) such that,
in terms of the new variables x ′′ and y ′′, the addition and multiplication laws (10) change their
form, without changing their contents. There exist, beside equation (10), other solutions such
as g(x, y) = φ(x), g(x, y) = ψ(y) (with some restrictions on the functions φ(x) and ψ(y))
or even g(x, y) = constant. These solutions are discarded as being non-generic.

From here on we shall restrict our discussion to transitions at a given time. Our aim is to
amend the general proof of Born’s law

Pr(A|B) = |x|2 x = 〈A|B〉 (11)

given in [3]. Here Pr(A|B) stands for the probability of transition, at a given time, fromB toA.
As shown in [3], assuming that the amplitude x = 〈B|A〉 for the inverse transitionA → B is a
function of the amplitude x = 〈A|B〉, we obtain 〈B|A〉 = 〈A|B〉∗. Futhermore, the probability
for the process B → A, assuming it to be a function of the amplitude x = 〈A|B〉, was shown
there to be of the form

Pr(A|B) = |x|α α > 0. (12)

Consider now all the orthogonal states Ai , which can be reached from B, with an amplitude
xi = 〈Ai |B〉. Since

〈B|B〉 =
∑
i

〈B|Ai〉〈Ai |B〉 =
∑
i

x∗
i xi (13)

and since the probability of the certain event satisfies Pr(B|B) = 1, we have by (12) and (13)

Pr(B|B) =
( ∑

i

|xi |2
)α

= 1. (14)

Hence, taking the logarithm of both sides, we obtain∑
|xi |2 = 1. (15)

However the totality of processes B → Ai forms an exhaustive and mutually exclusive set of
alternatives, satisfying (see equation (12))∑

Pr(Ai |B) =
∑

|xi |α = 1. (16)

Comparing (15) and (16) we find α = 2 and

Pr(A|B) = |x|2. (17)

(In [3] time dependence crept in leaving Pr(B(t2)|B(t1)) 
= 1, thus disabling the preceding
argument.)
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In summary, the assumptions (i) that amplitudes for processes in series or in parallel are
represented by analytic functions of the complex partial amplitudes and (ii) that the amplitude
for the inverse process and the probability of the process are functions of the amplitude for the
process are enough to derive the known quantum mechanical rules for combining amplitudes
and for calculating the corresponding probabilities. This is achieved using general states and
filters. That these assumptions are all that is needed was not fully realized in [2,3]. The work
of Caticha certainly helped to put things in sharper focus. In particular, as shown by Caticha,
assumption (i) is enough to establish the linearity of the Schrödinger equation.

Acknowledgments

One of us (YT) would like to thank Geoff Stedman for drawing his attention to [1], and for
reading and commenting on an earlier draft of this work. The hospitality of the University of
Canterbury, New Zealand, is warmly acknowledged.

References

[1] Caticha A 1998 Phys. Rev. A 57 1572
[2] Tikochinsky Y 1988 J. Math. Phys. 29 398
[3] Tikochinsky Y 1988 Int. J. Theor. Phys. 27 543
[4] Feynman R P, Leighton R B and Sands M 1965 The Feynman Lectures on Physics vol 3 (Reading, MA: Addison-

Wesley)
Feynman R P 1985 QED, Alix Mounter Memorial Lectures (Princeton, NJ: Princeton University Press)

[5] Cox R T 1946 Am. J. Phys. 14 1
[6] Cox R T 1961 The Algebra of Probable Inference (Baltimore, MD: John Hopkins University Press)


